module Data.List.Any.Properties where
open import Algebra
import Algebra.FunctionProperties as FP
open import Category.Monad
open import Data.Bool.Base using (Bool; false; true; T)
open import Data.Bool.Properties
open import Data.Empty
open import Data.List as List
open import Data.List.Any as Any using (Any; here; there)
open import Data.Product as Prod hiding (swap)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence as Eq using (_⇔_; module Equivalence)
open import Function.Inverse as Inv using (_↔_; module Inverse)
open import Function.Related as Related using (Related)
open import Function.Related.TypeIsomorphisms
open import Level
open import Relation.Binary
import Relation.Binary.HeterogeneousEquality as H
open import Relation.Binary.Product.Pointwise
open import Relation.Binary.PropositionalEquality as P
using (_≡_; refl; inspect) renaming ([_] to P[_])
open import Relation.Unary using (_⟨×⟩_; _⟨→⟩_) renaming (_⊆_ to _⋐_)
import Relation.Binary.Sigma.Pointwise as Σ
open import Relation.Binary.Sum
open Any.Membership-≡
open Related.EquationalReasoning
private
module ×⊎ {k ℓ} = CommutativeSemiring (×⊎-CommutativeSemiring k ℓ)
open module ListMonad {ℓ} = RawMonad (List.monad {ℓ = ℓ})
map-id : ∀ {a p} {A : Set a} {P : A → Set p} (f : P ⋐ P) {xs} →
(∀ {x} (p : P x) → f p ≡ p) →
(p : Any P xs) → Any.map f p ≡ p
map-id f hyp (here p) = P.cong here (hyp p)
map-id f hyp (there p) = P.cong there $ map-id f hyp p
map-∘ : ∀ {a p q r}
{A : Set a} {P : A → Set p} {Q : A → Set q} {R : A → Set r}
(f : Q ⋐ R) (g : P ⋐ Q)
{xs} (p : Any P xs) →
Any.map (f ∘ g) p ≡ Any.map f (Any.map g p)
map-∘ f g (here p) = refl
map-∘ f g (there p) = P.cong there $ map-∘ f g p
map∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs}
(p : Any P xs) → let p′ = find p in
{f : _≡_ (proj₁ p′) ⋐ P} →
f refl ≡ proj₂ (proj₂ p′) →
Any.map f (proj₁ (proj₂ p′)) ≡ p
map∘find (here p) hyp = P.cong here hyp
map∘find (there p) hyp = P.cong there (map∘find p hyp)
find∘map : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q}
{xs : List A} (p : Any P xs) (f : P ⋐ Q) →
find (Any.map f p) ≡ Prod.map id (Prod.map id f) (find p)
find∘map (here p) f = refl
find∘map (there p) f rewrite find∘map p f = refl
find-∈ : ∀ {a} {A : Set a} {x : A} {xs : List A} (x∈xs : x ∈ xs) →
find x∈xs ≡ (x , x∈xs , refl)
find-∈ (here refl) = refl
find-∈ (there x∈xs) rewrite find-∈ x∈xs = refl
private
lose∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A}
(p : Any P xs) →
uncurry′ lose (proj₂ (find p)) ≡ p
lose∘find p = map∘find p P.refl
find∘lose : ∀ {a p} {A : Set a} (P : A → Set p) {x xs}
(x∈xs : x ∈ xs) (pp : P x) →
find {P = P} (lose x∈xs pp) ≡ (x , x∈xs , pp)
find∘lose P x∈xs p
rewrite find∘map x∈xs (flip (P.subst P) p)
| find-∈ x∈xs
= refl
Any↔ : ∀ {a p} {A : Set a} {P : A → Set p} {xs} →
(∃ λ x → x ∈ xs × P x) ↔ Any P xs
Any↔ {P = P} {xs} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ (find {P = P})
; inverse-of = record
{ left-inverse-of = λ p →
find∘lose P (proj₁ (proj₂ p)) (proj₂ (proj₂ p))
; right-inverse-of = lose∘find
}
}
where
to : (∃ λ x → x ∈ xs × P x) → Any P xs
to = uncurry′ lose ∘ proj₂
Any-cong : ∀ {k ℓ} {A : Set ℓ} {P₁ P₂ : A → Set ℓ} {xs₁ xs₂ : List A} →
(∀ x → Related k (P₁ x) (P₂ x)) → xs₁ ∼[ k ] xs₂ →
Related k (Any P₁ xs₁) (Any P₂ xs₂)
Any-cong {P₁ = P₁} {P₂} {xs₁} {xs₂} P₁↔P₂ xs₁≈xs₂ =
Any P₁ xs₁ ↔⟨ sym $ Any↔ {P = P₁} ⟩
(∃ λ x → x ∈ xs₁ × P₁ x) ∼⟨ Σ.cong Inv.id (xs₁≈xs₂ ×-cong P₁↔P₂ _) ⟩
(∃ λ x → x ∈ xs₂ × P₂ x) ↔⟨ Any↔ {P = P₂} ⟩
Any P₂ xs₂ ∎
swap : ∀ {ℓ} {A B : Set ℓ} {P : A → B → Set ℓ} {xs ys} →
Any (λ x → Any (P x) ys) xs ↔ Any (λ y → Any (flip P y) xs) ys
swap {ℓ} {P = P} {xs} {ys} =
Any (λ x → Any (P x) ys) xs ↔⟨ sym $ Any↔ {a = ℓ} {p = ℓ} ⟩
(∃ λ x → x ∈ xs × Any (P x) ys) ↔⟨ sym $ Σ.cong Inv.id (λ {x} → (x ∈ xs ∎) ⟨ ×⊎.*-cong {ℓ = ℓ} ⟩ Any↔ {a = ℓ} {p = ℓ}) ⟩
(∃ λ x → x ∈ xs × ∃ λ y → y ∈ ys × P x y) ↔⟨ Σ.cong {a₁ = ℓ} Inv.id (∃∃↔∃∃ {a = ℓ} {b = ℓ} {p = ℓ} _) ⟩
(∃₂ λ x y → x ∈ xs × y ∈ ys × P x y) ↔⟨ ∃∃↔∃∃ {a = ℓ} {b = ℓ} {p = ℓ} _ ⟩
(∃₂ λ y x → x ∈ xs × y ∈ ys × P x y) ↔⟨ Σ.cong Inv.id (λ {y} → Σ.cong Inv.id (λ {x} →
(x ∈ xs × y ∈ ys × P x y) ↔⟨ sym $ ×⊎.*-assoc _ _ _ ⟩
((x ∈ xs × y ∈ ys) × P x y) ↔⟨ ×⊎.*-comm (x ∈ xs) (y ∈ ys) ⟨ ×⊎.*-cong ⟩ (P x y ∎) ⟩
((y ∈ ys × x ∈ xs) × P x y) ↔⟨ ×⊎.*-assoc _ _ _ ⟩
(y ∈ ys × x ∈ xs × P x y) ∎)) ⟩
(∃₂ λ y x → y ∈ ys × x ∈ xs × P x y) ↔⟨ Σ.cong {a₁ = ℓ} Inv.id (∃∃↔∃∃ {a = ℓ} {b = ℓ} {p = ℓ} _) ⟩
(∃ λ y → y ∈ ys × ∃ λ x → x ∈ xs × P x y) ↔⟨ Σ.cong Inv.id (λ {y} → (y ∈ ys ∎) ⟨ ×⊎.*-cong {ℓ = ℓ} ⟩ Any↔ {a = ℓ} {p = ℓ}) ⟩
(∃ λ y → y ∈ ys × Any (flip P y) xs) ↔⟨ Any↔ {a = ℓ} {p = ℓ} ⟩
Any (λ y → Any (flip P y) xs) ys ∎
⊥↔Any⊥ : ∀ {a} {A : Set a} {xs : List A} → ⊥ ↔ Any (const ⊥) xs
⊥↔Any⊥ {A = A} = record
{ to = P.→-to-⟶ (λ ())
; from = P.→-to-⟶ (λ p → from p)
; inverse-of = record
{ left-inverse-of = λ ()
; right-inverse-of = λ p → from p
}
}
where
from : {xs : List A} → Any (const ⊥) xs → ∀ {b} {B : Set b} → B
from (here ())
from (there p) = from p
⊥↔Any[] : ∀ {a} {A : Set a} {P : A → Set} → ⊥ ↔ Any P []
⊥↔Any[] = record
{ to = P.→-to-⟶ (λ ())
; from = P.→-to-⟶ (λ ())
; inverse-of = record
{ left-inverse-of = λ ()
; right-inverse-of = λ ()
}
}
⊎↔ : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {xs} →
(Any P xs ⊎ Any Q xs) ↔ Any (λ x → P x ⊎ Q x) xs
⊎↔ {P = P} {Q} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = from∘to
; right-inverse-of = to∘from
}
}
where
to : ∀ {xs} → Any P xs ⊎ Any Q xs → Any (λ x → P x ⊎ Q x) xs
to = [ Any.map inj₁ , Any.map inj₂ ]′
from : ∀ {xs} → Any (λ x → P x ⊎ Q x) xs → Any P xs ⊎ Any Q xs
from (here (inj₁ p)) = inj₁ (here p)
from (here (inj₂ q)) = inj₂ (here q)
from (there p) = Sum.map there there (from p)
from∘to : ∀ {xs} (p : Any P xs ⊎ Any Q xs) → from (to p) ≡ p
from∘to (inj₁ (here p)) = P.refl
from∘to (inj₁ (there p)) rewrite from∘to (inj₁ p) = P.refl
from∘to (inj₂ (here q)) = P.refl
from∘to (inj₂ (there q)) rewrite from∘to (inj₂ q) = P.refl
to∘from : ∀ {xs} (p : Any (λ x → P x ⊎ Q x) xs) →
to (from p) ≡ p
to∘from (here (inj₁ p)) = P.refl
to∘from (here (inj₂ q)) = P.refl
to∘from (there p) with from p | to∘from p
to∘from (there .(Any.map inj₁ p)) | inj₁ p | P.refl = P.refl
to∘from (there .(Any.map inj₂ q)) | inj₂ q | P.refl = P.refl
×↔ : {A B : Set} {P : A → Set} {Q : B → Set}
{xs : List A} {ys : List B} →
(Any P xs × Any Q ys) ↔ Any (λ x → Any (λ y → P x × Q y) ys) xs
×↔ {P = P} {Q} {xs} {ys} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = from∘to
; right-inverse-of = to∘from
}
}
where
to : Any P xs × Any Q ys → Any (λ x → Any (λ y → P x × Q y) ys) xs
to (p , q) = Any.map (λ p → Any.map (λ q → (p , q)) q) p
from : Any (λ x → Any (λ y → P x × Q y) ys) xs → Any P xs × Any Q ys
from pq with Prod.map id (Prod.map id find) (find pq)
... | (x , x∈xs , y , y∈ys , p , q) = (lose x∈xs p , lose y∈ys q)
from∘to : ∀ pq → from (to pq) ≡ pq
from∘to (p , q)
rewrite find∘map {Q = λ x → Any (λ y → P x × Q y) ys}
p (λ p → Any.map (λ q → (p , q)) q)
| find∘map {Q = λ y → P (proj₁ (find p)) × Q y}
q (λ q → proj₂ (proj₂ (find p)) , q)
| lose∘find p
| lose∘find q
= refl
to∘from : ∀ pq → to (from pq) ≡ pq
to∘from pq
with find pq
| (λ (f : _≡_ (proj₁ (find pq)) ⋐ _) → map∘find pq {f})
... | (x , x∈xs , pq′) | lem₁
with find pq′
| (λ (f : _≡_ (proj₁ (find pq′)) ⋐ _) → map∘find pq′ {f})
... | (y , y∈ys , p , q) | lem₂
rewrite P.sym $ map-∘ {R = λ x → Any (λ y → P x × Q y) ys}
(λ p → Any.map (λ q → p , q) (lose y∈ys q))
(λ y → P.subst P y p)
x∈xs
= lem₁ _ helper
where
helper : Any.map (λ q → p , q) (lose y∈ys q) ≡ pq′
helper rewrite P.sym $ map-∘ {R = λ y → P x × Q y}
(λ q → p , q)
(λ y → P.subst Q y q)
y∈ys
= lem₂ _ refl
private
map⁺ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p}
{f : A → B} {xs} →
Any (P ∘ f) xs → Any P (List.map f xs)
map⁺ (here p) = here p
map⁺ (there p) = there $ map⁺ p
map⁻ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p}
{f : A → B} {xs} →
Any P (List.map f xs) → Any (P ∘ f) xs
map⁻ {xs = []} ()
map⁻ {xs = x ∷ xs} (here p) = here p
map⁻ {xs = x ∷ xs} (there p) = there $ map⁻ p
map⁺∘map⁻ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p}
{f : A → B} {xs} →
(p : Any P (List.map f xs)) →
map⁺ (map⁻ p) ≡ p
map⁺∘map⁻ {xs = []} ()
map⁺∘map⁻ {xs = x ∷ xs} (here p) = refl
map⁺∘map⁻ {xs = x ∷ xs} (there p) = P.cong there (map⁺∘map⁻ p)
map⁻∘map⁺ : ∀ {a b p} {A : Set a} {B : Set b} (P : B → Set p)
{f : A → B} {xs} →
(p : Any (P ∘ f) xs) →
map⁻ {P = P} (map⁺ p) ≡ p
map⁻∘map⁺ P (here p) = refl
map⁻∘map⁺ P (there p) = P.cong there (map⁻∘map⁺ P p)
map↔ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p}
{f : A → B} {xs} →
Any (P ∘ f) xs ↔ Any P (List.map f xs)
map↔ {P = P} {f = f} = record
{ to = P.→-to-⟶ $ map⁺ {P = P} {f = f}
; from = P.→-to-⟶ $ map⁻ {P = P} {f = f}
; inverse-of = record
{ left-inverse-of = map⁻∘map⁺ P
; right-inverse-of = map⁺∘map⁻
}
}
private
++⁺ˡ : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys} →
Any P xs → Any P (xs ++ ys)
++⁺ˡ (here p) = here p
++⁺ˡ (there p) = there (++⁺ˡ p)
++⁺ʳ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} →
Any P ys → Any P (xs ++ ys)
++⁺ʳ [] p = p
++⁺ʳ (x ∷ xs) p = there (++⁺ʳ xs p)
++⁻ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} →
Any P (xs ++ ys) → Any P xs ⊎ Any P ys
++⁻ [] p = inj₂ p
++⁻ (x ∷ xs) (here p) = inj₁ (here p)
++⁻ (x ∷ xs) (there p) = Sum.map there id (++⁻ xs p)
++⁺∘++⁻ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys}
(p : Any P (xs ++ ys)) →
[ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs p) ≡ p
++⁺∘++⁻ [] p = refl
++⁺∘++⁻ (x ∷ xs) (here p) = refl
++⁺∘++⁻ (x ∷ xs) (there p) with ++⁻ xs p | ++⁺∘++⁻ xs p
++⁺∘++⁻ (x ∷ xs) (there p) | inj₁ p′ | ih = P.cong there ih
++⁺∘++⁻ (x ∷ xs) (there p) | inj₂ p′ | ih = P.cong there ih
++⁻∘++⁺ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys}
(p : Any P xs ⊎ Any P ys) →
++⁻ xs ([ ++⁺ˡ , ++⁺ʳ xs ]′ p) ≡ p
++⁻∘++⁺ [] (inj₁ ())
++⁻∘++⁺ [] (inj₂ p) = refl
++⁻∘++⁺ (x ∷ xs) (inj₁ (here p)) = refl
++⁻∘++⁺ (x ∷ xs) {ys} (inj₁ (there p)) rewrite ++⁻∘++⁺ xs {ys} (inj₁ p) = refl
++⁻∘++⁺ (x ∷ xs) (inj₂ p) rewrite ++⁻∘++⁺ xs (inj₂ p) = refl
++ˡ = ++⁺ˡ
++ʳ = ++⁺ʳ
++↔ : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys} →
(Any P xs ⊎ Any P ys) ↔ Any P (xs ++ ys)
++↔ {P = P} {xs = xs} = record
{ to = P.→-to-⟶ [ ++⁺ˡ {P = P}, ++⁺ʳ {P = P} xs ]′
; from = P.→-to-⟶ $ ++⁻ {P = P} xs
; inverse-of = record
{ left-inverse-of = ++⁻∘++⁺ xs
; right-inverse-of = ++⁺∘++⁻ xs
}
}
private
return⁺ : ∀ {a p} {A : Set a} {P : A → Set p} {x} →
P x → Any P (return x)
return⁺ = here
return⁻ : ∀ {a p} {A : Set a} {P : A → Set p} {x} →
Any P (return x) → P x
return⁻ (here p) = p
return⁻ (there ())
return⁺∘return⁻ : ∀ {a p} {A : Set a} {P : A → Set p} {x}
(p : Any P (return x)) →
return⁺ (return⁻ p) ≡ p
return⁺∘return⁻ (here p) = refl
return⁺∘return⁻ (there ())
return⁻∘return⁺ : ∀ {a p} {A : Set a} (P : A → Set p) {x} (p : P x) →
return⁻ {P = P} (return⁺ p) ≡ p
return⁻∘return⁺ P p = refl
return↔ : ∀ {a p} {A : Set a} {P : A → Set p} {x} →
P x ↔ Any P (return x)
return↔ {P = P} = record
{ to = P.→-to-⟶ $ return⁺ {P = P}
; from = P.→-to-⟶ $ return⁻ {P = P}
; inverse-of = record
{ left-inverse-of = return⁻∘return⁺ P
; right-inverse-of = return⁺∘return⁻
}
}
∷↔ : ∀ {a p} {A : Set a} (P : A → Set p) {x xs} →
(P x ⊎ Any P xs) ↔ Any P (x ∷ xs)
∷↔ P {x} {xs} =
(P x ⊎ Any P xs) ↔⟨ return↔ {P = P} ⊎-cong (Any P xs ∎) ⟩
(Any P [ x ] ⊎ Any P xs) ↔⟨ ++↔ {P = P} {xs = [ x ]} ⟩
Any P (x ∷ xs) ∎
private
concat⁺ : ∀ {a p} {A : Set a} {P : A → Set p} {xss} →
Any (Any P) xss → Any P (concat xss)
concat⁺ (here p) = ++⁺ˡ p
concat⁺ (there {x = xs} p) = ++⁺ʳ xs (concat⁺ p)
concat⁻ : ∀ {a p} {A : Set a} {P : A → Set p} xss →
Any P (concat xss) → Any (Any P) xss
concat⁻ [] ()
concat⁻ ([] ∷ xss) p = there $ concat⁻ xss p
concat⁻ ((x ∷ xs) ∷ xss) (here p) = here (here p)
concat⁻ ((x ∷ xs) ∷ xss) (there p)
with concat⁻ (xs ∷ xss) p
... | here p′ = here (there p′)
... | there p′ = there p′
concat⁻∘++⁺ˡ : ∀ {a p} {A : Set a} {P : A → Set p} {xs} xss (p : Any P xs) →
concat⁻ (xs ∷ xss) (++⁺ˡ p) ≡ here p
concat⁻∘++⁺ˡ xss (here p) = refl
concat⁻∘++⁺ˡ xss (there p) rewrite concat⁻∘++⁺ˡ xss p = refl
concat⁻∘++⁺ʳ : ∀ {a p} {A : Set a} {P : A → Set p} xs xss (p : Any P (concat xss)) →
concat⁻ (xs ∷ xss) (++⁺ʳ xs p) ≡ there (concat⁻ xss p)
concat⁻∘++⁺ʳ [] xss p = refl
concat⁻∘++⁺ʳ (x ∷ xs) xss p rewrite concat⁻∘++⁺ʳ xs xss p = refl
concat⁺∘concat⁻ : ∀ {a p} {A : Set a} {P : A → Set p} xss (p : Any P (concat xss)) →
concat⁺ (concat⁻ xss p) ≡ p
concat⁺∘concat⁻ [] ()
concat⁺∘concat⁻ ([] ∷ xss) p = concat⁺∘concat⁻ xss p
concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (here p) = refl
concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there p)
with concat⁻ (xs ∷ xss) p | concat⁺∘concat⁻ (xs ∷ xss) p
concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there .(++⁺ˡ p′)) | here p′ | refl = refl
concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there .(++⁺ʳ xs (concat⁺ p′))) | there p′ | refl = refl
concat⁻∘concat⁺ : ∀ {a p} {A : Set a} {P : A → Set p} {xss} (p : Any (Any P) xss) →
concat⁻ xss (concat⁺ p) ≡ p
concat⁻∘concat⁺ (here p) = concat⁻∘++⁺ˡ _ p
concat⁻∘concat⁺ (there {x = xs} {xs = xss} p)
rewrite concat⁻∘++⁺ʳ xs xss (concat⁺ p) =
P.cong there $ concat⁻∘concat⁺ p
concat↔ : ∀ {a p} {A : Set a} {P : A → Set p} {xss} →
Any (Any P) xss ↔ Any P (concat xss)
concat↔ {P = P} {xss = xss} = record
{ to = P.→-to-⟶ $ concat⁺ {P = P}
; from = P.→-to-⟶ $ concat⁻ {P = P} xss
; inverse-of = record
{ left-inverse-of = concat⁻∘concat⁺
; right-inverse-of = concat⁺∘concat⁻ xss
}
}
>>=↔ : ∀ {ℓ p} {A B : Set ℓ} {P : B → Set p} {xs} {f : A → List B} →
Any (Any P ∘ f) xs ↔ Any P (xs >>= f)
>>=↔ {P = P} {xs} {f} =
Any (Any P ∘ f) xs ↔⟨ map↔ {P = Any P} {f = f} ⟩
Any (Any P) (List.map f xs) ↔⟨ concat↔ {P = P} ⟩
Any P (xs >>= f) ∎
⊛↔ : ∀ {ℓ} {A B : Set ℓ} {P : B → Set ℓ}
{fs : List (A → B)} {xs : List A} →
Any (λ f → Any (P ∘ f) xs) fs ↔ Any P (fs ⊛ xs)
⊛↔ {ℓ} {P = P} {fs} {xs} =
Any (λ f → Any (P ∘ f) xs) fs ↔⟨ Any-cong (λ _ → Any-cong (λ _ → return↔ {a = ℓ} {p = ℓ}) (_ ∎)) (_ ∎) ⟩
Any (λ f → Any (Any P ∘ return ∘ f) xs) fs ↔⟨ Any-cong (λ _ → >>=↔ {ℓ = ℓ} {p = ℓ}) (_ ∎) ⟩
Any (λ f → Any P (xs >>= return ∘ f)) fs ↔⟨ >>=↔ {ℓ = ℓ} {p = ℓ} ⟩
Any P (fs ⊛ xs) ∎
⊛⁺′ : ∀ {ℓ} {A B : Set ℓ} {P : A → Set ℓ} {Q : B → Set ℓ}
{fs : List (A → B)} {xs} →
Any (P ⟨→⟩ Q) fs → Any P xs → Any Q (fs ⊛ xs)
⊛⁺′ {ℓ} pq p =
Inverse.to (⊛↔ {ℓ = ℓ}) ⟨$⟩
Any.map (λ pq → Any.map (λ {x} → pq {x}) p) pq
⊗↔ : ∀ {ℓ} {A B : Set ℓ} {P : A × B → Set ℓ}
{xs : List A} {ys : List B} →
Any (λ x → Any (λ y → P (x , y)) ys) xs ↔ Any P (xs ⊗ ys)
⊗↔ {ℓ} {P = P} {xs} {ys} =
Any (λ x → Any (λ y → P (x , y)) ys) xs ↔⟨ return↔ {a = ℓ} {p = ℓ} ⟩
Any (λ _,_ → Any (λ x → Any (λ y → P (x , y)) ys) xs) (return _,_) ↔⟨ ⊛↔ ⟩
Any (λ x, → Any (P ∘ x,) ys) (_,_ <$> xs) ↔⟨ ⊛↔ ⟩
Any P (xs ⊗ ys) ∎
⊗↔′ : {A B : Set} {P : A → Set} {Q : B → Set}
{xs : List A} {ys : List B} →
(Any P xs × Any Q ys) ↔ Any (P ⟨×⟩ Q) (xs ⊗ ys)
⊗↔′ {P = P} {Q} {xs} {ys} =
(Any P xs × Any Q ys) ↔⟨ ×↔ ⟩
Any (λ x → Any (λ y → P x × Q y) ys) xs ↔⟨ ⊗↔ ⟩
Any (P ⟨×⟩ Q) (xs ⊗ ys) ∎
map-with-∈↔ :
∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p} {xs : List A}
{f : ∀ {x} → x ∈ xs → B} →
(∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) ↔ Any P (map-with-∈ xs f)
map-with-∈↔ {A = A} {B} {P} = record
{ to = P.→-to-⟶ (map-with-∈⁺ _)
; from = P.→-to-⟶ (map-with-∈⁻ _ _)
; inverse-of = record
{ left-inverse-of = from∘to _
; right-inverse-of = to∘from _ _
}
}
where
map-with-∈⁺ : ∀ {xs : List A}
(f : ∀ {x} → x ∈ xs → B) →
(∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) →
Any P (map-with-∈ xs f)
map-with-∈⁺ f (_ , here refl , p) = here p
map-with-∈⁺ f (_ , there x∈xs , p) =
there $ map-with-∈⁺ (f ∘ there) (_ , x∈xs , p)
map-with-∈⁻ : ∀ (xs : List A)
(f : ∀ {x} → x ∈ xs → B) →
Any P (map-with-∈ xs f) →
∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)
map-with-∈⁻ [] f ()
map-with-∈⁻ (y ∷ xs) f (here p) = (y , here refl , p)
map-with-∈⁻ (y ∷ xs) f (there p) =
Prod.map id (Prod.map there id) $ map-with-∈⁻ xs (f ∘ there) p
from∘to : ∀ {xs : List A} (f : ∀ {x} → x ∈ xs → B)
(p : ∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) →
map-with-∈⁻ xs f (map-with-∈⁺ f p) ≡ p
from∘to f (_ , here refl , p) = refl
from∘to f (_ , there x∈xs , p)
rewrite from∘to (f ∘ there) (_ , x∈xs , p) = refl
to∘from : ∀ (xs : List A) (f : ∀ {x} → x ∈ xs → B)
(p : Any P (map-with-∈ xs f)) →
map-with-∈⁺ f (map-with-∈⁻ xs f p) ≡ p
to∘from [] f ()
to∘from (y ∷ xs) f (here p) = refl
to∘from (y ∷ xs) f (there p) =
P.cong there $ to∘from xs (f ∘ there) p
private
any⁺ : ∀ {a} {A : Set a} (p : A → Bool) {xs} →
Any (T ∘ p) xs → T (any p xs)
any⁺ p (here px) = Equivalence.from T-∨ ⟨$⟩ inj₁ px
any⁺ p (there {x = x} pxs) with p x
... | true = _
... | false = any⁺ p pxs
any⁻ : ∀ {a} {A : Set a} (p : A → Bool) xs →
T (any p xs) → Any (T ∘ p) xs
any⁻ p [] ()
any⁻ p (x ∷ xs) px∷xs with p x | inspect p x
any⁻ p (x ∷ xs) px∷xs | true | P[ eq ] = here (Equivalence.from T-≡ ⟨$⟩ eq)
any⁻ p (x ∷ xs) px∷xs | false | _ = there (any⁻ p xs px∷xs)
any⇔ : ∀ {a} {A : Set a} {p : A → Bool} {xs} →
Any (T ∘ p) xs ⇔ T (any p xs)
any⇔ = Eq.equivalence (any⁺ _) (any⁻ _ _)
private
++-comm : ∀ {a p} {A : Set a} {P : A → Set p} xs ys →
Any P (xs ++ ys) → Any P (ys ++ xs)
++-comm xs ys = [ ++⁺ʳ ys , ++⁺ˡ ]′ ∘ ++⁻ xs
++-comm∘++-comm : ∀ {a p} {A : Set a} {P : A → Set p}
xs {ys} (p : Any P (xs ++ ys)) →
++-comm ys xs (++-comm xs ys p) ≡ p
++-comm∘++-comm [] {ys} p
rewrite ++⁻∘++⁺ ys {ys = []} (inj₁ p) = P.refl
++-comm∘++-comm {P = P} (x ∷ xs) {ys} (here p)
rewrite ++⁻∘++⁺ {P = P} ys {ys = x ∷ xs} (inj₂ (here p)) = P.refl
++-comm∘++-comm (x ∷ xs) (there p) with ++⁻ xs p | ++-comm∘++-comm xs p
++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ʳ ys p))))
| inj₁ p | P.refl
rewrite ++⁻∘++⁺ ys (inj₂ p)
| ++⁻∘++⁺ ys (inj₂ $ there {x = x} p) = P.refl
++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ˡ p))))
| inj₂ p | P.refl
rewrite ++⁻∘++⁺ ys {ys = xs} (inj₁ p)
| ++⁻∘++⁺ ys {ys = x ∷ xs} (inj₁ p) = P.refl
++↔++ : ∀ {a p} {A : Set a} {P : A → Set p} xs ys →
Any P (xs ++ ys) ↔ Any P (ys ++ xs)
++↔++ {P = P} xs ys = record
{ to = P.→-to-⟶ $ ++-comm {P = P} xs ys
; from = P.→-to-⟶ $ ++-comm {P = P} ys xs
; inverse-of = record
{ left-inverse-of = ++-comm∘++-comm xs
; right-inverse-of = ++-comm∘++-comm ys
}
}